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A conformal mapping which does not belong to the class of rational mappings 
is used to solve the first fundamental problem of elasticity theory and permits 
finding the stress distribution in a strip with a different number of semi-infini- 
te slits. Underlying the method is the use of dependences between the bounda- 
ry values of the mapping function, which differ, in the general case, when the 

real axis is approached from the upper and lower half-planes. The solution 
obtained satisfies the boundary condition of the problem, whereupon the cor- 
rectness of the solution is verified. 

The domain D between lines bounding a strip and the edges of slits(Fig. 1) can be 
considered as the conformal transformation of the upper half-plane of the plane 5 = 

o -1 iv onto the plane z -= x + iy by means of the function 

where c > 0, a,,. > 0 are given constants. 
In fact 

x=cLn ti (os-ak2), y = nnc 

k=l 

in the interval (- co, -a,) of the o -axis since 
11 

I Ill z = 2 arg (ak + o) 
fi=r 

When the point c=o goes through the point -a,, the vector an + j starting from 
the point -a, performs a rotation through an angle -z. Hence, in the interval (---a,, 

on+]) where an_l < 1 c I < aiL n-1 
z = c In (a,$ - oa) fl (u2 - ~,a), y=(n--1)nc (2) 

I(=1 

where --oo <r <x+1 and zn_i equals the greatest value of the function x=x(a) defined 
by (2) in the interval (-a,, -an-r). Therefore, the interval (-a,, -a,_J of the c - 
axis is transformed into a slit in the strip passing along the line y = c(n-i)n from infi- 
nity to the point with abscissa z=x,+~. It can be shown completely analogously that the 

interval (--d,_l, --d,_,) of the same axis is converted by means of the function (1) 
into a slit passing along the line y=c(n-2)n, where n-s 

z = c In (an2 - 02) (a:_, - u2) J-J (a2 - ais) (3) 

i=l 
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and -CO <z <z+s, where z,,+ equals the greatest value of z = z (a) defined by(3). 
It is similarly established that each of the intervals (--a,, --d,,), . . ., (-a,, %), 

. . ., k-l* a,) of the u - axis is converted into a slit along one of the lines parallel to 
the x - axis passing from infinity to one of the points with abscissas zn_r, . . ., 51. The 
interval (--a,, a,) is hence converted into a slit along the z - axis itself, which goes to 
the point z=q where zl=2c In alas... a,, is the image of the point c=O according to( 1). 
The abscissas x,,_s, . . . , z2 of the terminations of the remaining slits are found from the 
condition that each is the greatest value of the function z = z(u) defining the real 
part of z in the appropriate interval of the u - axis. The imaginary part of z gover- 
ning the equation of a line along which the slit passes will equal 

y = i arg (aks - 52) 
It=1 

When the point 6 passes each of the points -a,,, . . ., a, the quantity J decreasti 
by n taking on the values y = ncl, 2 = 0, -t_ 1, . . ., f (n - 1) (Fig. 1 corresponds to 

n = 2 ). Therefore, the whole real u - axis is transferred into two infinite lines and a 

system of semi-infinite slits by means of (1). The terminations of these slits are pair - 

wise - symmetric relative to the cr - axis. Hence, points of the upper half-plane are 
transformed uniquely and conformally into interior points of the strips. Thus, for exam- 
ple, points of the TJ axis are transformed into the points 

i=l 

of the real 05 axis to the right of the point z=zr. The mapping inverse to (1) is not 
unique. However, by using some inequalities [l ,2], that branch which will be unique 
within the domain D can be extracted from the multivalued result of inverting the 

function (1). By using this branch and the function (1) the upper half-plane and the 
strip are mutually mapped uniquely and conformally. 
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0 

i e 

f 0 X 

Fig, 1 Fig. 2 

Turning to the solution of the first fundamental problem using the transformation 
(1) , let us first consider the case of a strip with one semi-infinite slit (Fig. 2). Then 

(1) becomes 
2 = c In (a” - 6”) (4) 

A method for solving the fundamental problems of elasticity theory is given in the 
well-known monograph [3] for domains mapped on a half-plane by using rational func- 
tions . Let us show that use of transformations of the form (1) permits obtaining the so - 
lution of the problem mentioned for a strip with several slits or one slit, respectively, 
for different values of n and in the particular case (4) when n = 1, without belonging 
to the class of rational functions. The validity of the solution found is verified by the 
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fact that it satisfies both the boundary condition and the solvability conditions for the 
problem. However, a number of specific singularities, which significantly complicate 
seeking the solution, will hence occur as compared to the use of rational mappings. 

It is known [3 - 51 that the solution of the first fundamental problem for the domain 

mapped on the upper half-plane by means of the function z = o (5) reduces to deter - 
mining two holomorphic functions @ (5) and \r (5) in the upper half-plane from the 
boundary condition (see [Z] I Sect. 92). 

@@~+wHg=q {o(oW (6) + o’ (a) Y (cI)} = N + iT (5) 

Here cr is a point on the real axis on the plane 5 = o + iq,, and N and T are the 
normal and tangential stresses given on the edges of the strip and the edges of the slits 
as functions of the curvilinear coordinates introduced by the mapping (4). 

In contrast to rational conformal mappings, the right side of (4) generally takes on 
different values on the real d axis depending on whether 5 tends to o from the upper 

or lower half-planes. Indeed, for 5 -+ o < -_a, remaining in the upper half-plane, 
then z = cln 1 a8 - aal + inc; hence 5 .-+.o< --_a, remaining in the lower half- 
plane, and z = c In 1 aa - u2 1 - &xc. The other intervals of the o - axis are ana- 

logously mapped by means of (4) _ 
Consequently, the (J - axis as a set of limit points satisfying the condition Im 5 < 

0, 5 -+ b, is transformed by means of (4) into the b~ndary lines of the strip determi- 
ned by the formulas 

1, -co<a<--a 

~~~(u)=c[ln~o~-a~~+inA~], Ao= _;* -*<(J<a 
( I a<a<= 

(6) 

This axis as a set of limit points corresponding to the condition Imf ( O,z --f 
c is transformed by means of (4) into the b~~dary lines of a strip defined by the for - 

z* = co* (a) = c [In 1 u2 - a2 1 - in&l = G-(G) 

It follows from (6) and (7) that the upper and lower half-plans are transformed 
by means of (4) into two strips with slits, where one of the strips is the mapping of the 
other on the real x axis, Inserting 0’ (a) = -_2c, @/(a* - cr2) into (5), the boun- 
dary condition of the problem can be written as 

UcD (a) + OQ, (u) - &o* (CT) (a2 - 02) Cg’ (o) + aY!’ (o) = F @I 
F=o(N+iT) 

or going over to conjugate values in (8), as 

a@ (a) + a$ (u) - ~w(u)(u2-.2)aqu)+oqJ)~P (9) 

Expressing the condition that the function cty (0) defined by (8) is a boundary 
value of the function 5 Y (c) which is holomorphic in the upper-half-plane and va- 
nishes at infinity we obtain by using formula (21) of Sect, 76 in [3] 

1 - F&T O” aa3(0) 
2ni [S -_ 

o-6 s -do- i *da+ 
-x, -do --m 

1 ~~o)(a2-u2)~(u)du = o 

2c o---P 1 

(10) 
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where 5 is a point in the upper half-plane. Since b@ (u) (05 \a)) is the boundary 

value of the function @D (5) ( or c a (5)) respectively) which is holomorphic in the 
upper (lower) half-plane and vanishes at infinity, then the second integral equals 
c@ (5) and the third is zero. To evaluate the fonrth integral, the factors in the inte- 
grand must be reduced to a common domain of definition. To do this, it is sufficient 
to use the expression for o (a) in terms of o* (a), which follows from (6) and (7) 

6.l ((I) = o+(a) + i2nc A,. 
After this, the fourth integral in (4) can be written as 

1 m --a 

4nci s o(+ou)d+&- y o(a)x(a)da+ni s x(u)du-- (11) 

m a:; ] -m --DJ 

x (4 dJ . 

x (g i (a2 - u2) @’ (4 
U-E 

Let us show that each of the integrals in the right side of (11) are zero. Indeed, noting 
that the integrand in the first integral has a point of discontinuity at o = -&a, we re- 

place the line of integration by line L consisting of segments of the e axis and semi- 
circles of the small radius p described from the points a and -a (Fig. 3). 

. 
A -a aAf 86 

Fig. 3 

Then the integrand as a function of the variable point o of the lower half-plane is 
holomorphic in the domain lying below the line L. Constructing the curvilinear ret - 

tangle ABDC with two congruent sides H and 21,, as shown in Fig. 3, bounding the 
domain G, we have for all finite values of H and I, 

s 
w(a)X(a)d3=2~i~res(6)-0 

R 

where R is the contour of the domain G . The value obtained for the integral is inde- 

pendent of the magnitude of the perimeter R , therefore 

s 
o(o)~(u)du=lim o(u)~(u)dcr=O for H-0, 

s 
la--. 00 

L R 

We see that the second and also the third integral are zero, respectively, from analogous 
calculations around the contour of the figure A,BDC, , in the right sides of (11) in the 
intervals (-00, -(a + fat ((a + P), ml. 

Now ~ let us show that as p --f 0 the magnitudes of the integrals considered also re- 
main zero. For the former, we have on an arc y of a circle of radius P ( Fig. 3) 
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(aa -p’s”, 0 In (aa- Z”) 3 (T) 

Y f-c 

where m is a proportionality factor between p and IT-- 5 1 since if - c I= qt, 0 < 
p<2 (Fig.3). TherelationI~~-_~I=Ia-%1I~+~1~Ff(2~+p) isused here. 
Since 

;_; Pa I In P @a + p) 1 = - Iii 
(a + PI Ps t2@ + p) = 0 

and CD (3 is a bounded function, then the right side of the estimate of the integral va- 
nishes as p --, 0 . It hence follows that the integral over the arc equals zero as P -+ 0, 

which means that as the line f, is rectified into the line Oa the integral 
OD 

s 
o(u)X(u)du=O 

That the two other integrals are zero as p --, 0 is established analogously. 
Therefore, we finally obtain from condition (10) 

(12) 

After this, the function f y (fJ is determined by means of its boundary value from the 
formula (8) 

(13) 

To evaluate the third integral on the right side of (13) we express a* (a) in terms of 

o (a) on the basis of (6) and (7). It hence follows that 

CC+@ (a) = w (a) - i2 n&4* (14) 

Then the integral mentioned can be represented by the sum of integrals 

To evaluate the first of the integrals in the right side of (15), we find first 

where G1 is a rectangular domain: A < Q < -(a + P), --H < rl < 0 (Fig. 31, 
containing the point C : J1: = Z res (C) = - n;i (a” - 8%) W (Q. Since J, is 

independent of the size of the domain G, then we obtain for H, p + 0, A -+ - 00 



Solution of the first fundamental problem of elasticity theory 725 

--a 
1 -- 
2 s 

x(a)&= -ni(aa--~~)w(~) 

We find analogously for the second integral in the right side of (15) 

1 O” 
2 

s 
xl(a)&= ni(&-~s)q<) 

C.I 

The result of evaluating these integrals can be inserted into (13) in the form of one 

term CD1 (6) by setting 

CD, (fJ = - inA, (us - 5s) 0’ (5) (16) 

Finally, let us note that the product (a’ - as) o (a) = (aa - a*) c In (a” 
- #) on the CT - axis has an eliminable discontinuity at u = -t a. Hence, the in - 

tegrand of the integral 
m 

is holomorphic in the upper half-plane and vanishes at infinity ( since a,’ (5) possesses 

this property by assumption), consequently J, = (a”- 02) In (2 - ca) @’ (6). 
Therefore, according to (16) 

The functions <D (6) and Y jc) are determined analogously for strips with any 

number of slits in conformity with the value of n in (1). Thus, for a strip with three 
slits (Fig. 1) , we obtain after all the computations 

a0 Faa *a = & \ - a-6 
--a0 

O” Fda 
y 63 = &j- 1 a-_5 + Q, (5) - 

-00<a<-a2i 
-as<a<-aa,; 

Ala= 0 
7- al <o<ar; 

Ala - t 
- ‘Ia9 al < a < Qa 
--lb o%<a<oo 
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Table 1 

o+ aI2 0 i-c 0 n --2P 
0- -u/2 3t n 0 n -2P 
?I 1,3a 0 0 0 0 0 

--n --1,3a n n: al 0 0 
--n/2 ha 18,5” 57” 10,5” 46,5” -0,156~ 

Jr12 -Xa 161 5” , 123” 169,5” 46,5’ -0,156~ 

Let us present an example of computing the stresses by means of (12) and (17) for 
the slit edges (Fig. 2) loaded by normal pressure 

N(x)=--pcT(x)= 
p va2 - exit for - 00 < xi < xl; 

-P J/-m for _ OO<r-<r,, p =eonst>o 

cn(&- ++ 
c 

a-5 fln - 
a+C 1 

on (-a,a) 
(18) 

Since Re 0 (5) = Pin (sin rp - 8/Z), where (o = arg 5, 6 = ‘pl - cpz, ‘pz = arg (6 - a), 

9% = WC (C + 4, then to construct the diagram (Fig, 2) of the distribution of values of 
the sum X, + Y, over the section Z= 2 In ( 1/5/z), we obtain the data presented be - 
low (3, = 1.28 + 0.43i). 

Let us show that the solution governed by the functions (18) satisfies the boundary 
condition (9). In fact, for I; = u 

a>(a) =-$[(.+ln +$&+)L---$-I on (-a,a) 

P = I 5 I; pr = I 5 - a 1, pz = i 5 + a /, 5 (u) = Pin I----(112 In pJp2 f a/p) i - z/2] 

whereupon 
o [@ (0) + 8((o)] = -0p (19) 

in the same interval. Hence 

- i& 0 (u) (a2 - 62) 5*(u) = ‘Pa -2;;(3--+(a~- 8) 

c&?(a)=- 21t *(3--$)In(&- os) 

(20) 

(21) 

The boundary condition (9), as the sum of (19) - (21). goes over into a given quantity 
N(u)=-po in the interval (--a, a), and as is easy to compute, vanishes outside this 
interval, which is a confirmation of the correctness of the solution. 



Solution of the first furidamental problem of elasticity theory 721 

REFERENCES 

1. Chigarev, V.N., Certain Mappings of Multivalued Functions and Their Appli- 
cation, “Naukova Dumka”, Kiev, 1971. 

2. Privalov, I. I., Introduction to the Theory of Functions of a Complex Variable. 

Gostekhizdat , Moscow -Leningrad, 1948. 

3. Muskhelishvili, N, I., (English translation), Some Basic Problems of the 
Mathematical Theory of Elasticity. Groningen , Noordhoff, 1953. 

4. Beckenbach, E. F., editor, Modern Mathematics for Engineers. Izd . inostr . 
lit., Moscow, 1959. 

5. Belonosov, S. M., Fundamental Plane Static Problems of Elasticity Theory 
for Simply and Doubly - Connected Domains. Akad. Nauk. SSSR, Novosi - 

birsk , 1962. 

Translated by M. D. F. 


